Zeige Ergebnisse 1 - 10 von 1707
2024
Abdelmonem, A. M., Lavrentieva, A., & Bigall, N. C. (2024). Fabrication of surface-functionalizable amphiphilic curcumin nanogels for biosensing and biomedical applications. Chemical papers, 78(1), 533-546. https://doi.org/10.1007/s11696-023-03108-4
Al-Qaraleh, S. Y., Al-Zereini, W. A., Oran, S. A., Al-Madanat, O. Y., Al-Qtaitat, A. I., & Alahmad, A. (2024). Enhanced anti-breast cancer activity of green synthesized selenium nanoparticles by PEGylation: induction of apoptosis and potential anticancer drug delivery system. Advances in Natural Sciences: Nanoscience and Nanotechnology, 15(2), Artikel 025006. https://doi.org/10.1088/2043-6262/ad4bae
Awawdeh, K., Buttkewitz, M. A., Bahnemann, J., & Segal, E. (2024). Enhancing the performance of porous silicon biosensors: the interplay of nanostructure design and microfluidic integration. Microsystems and Nanoengineering, 10(1), Artikel 100. https://doi.org/10.1038/s41378-024-00738-w
Barlas, F. B., Olceroglu, B., Ag Seleci, D., Gumus, Z. P., Siyah, P., Dabbek, M., Garnweitne, G., Stahl, F., Scheper, T., & Timur, S. (2024). Enhancing chemotherapeutic efficacy: Niosome-encapsulated Dox-Cis with MUC-1 aptamer. Cancer medicine, 13(15), Artikel e70079. https://doi.org/10.1002/cam4.70079
Baroth, T., Loewner, S., Heymann, H., Cholewa, F., Blume, H., & Blume, C. (2024). An Intelligent and Efficient Workflow for Path-Oriented 3D Bioprinting of Tubular Scaffolds. 3D Printing and Additive Manufacturing, 11(1), 323-332. https://doi.org/10.1089/3dp.2022.0201
Chanquia, S. N., Bittner, J. P., Santner, P., Szabó, L. K., Madsen, J. S., Øhlenschlæger, M. L., Sarvari, A. G., Merrild, A. H., Fo̷nss, K. G., Jaron, D., Lutz, L., Kara, S., & Eser, B. E. (2024). Active-Site Mutagenesis of Fatty Acid Photodecarboxylase: Experimental and Computational Insight into Substrate Chain-Length Specificity. ACS catalysis, 14(21), 15837-15849. https://doi.org/10.1021/acscatal.4c02970
Christoffers, S., Seiler, L., Wiebe, E., & Blume, C. (2024). Possibilities and efficiency of MSC co-transfection for gene therapy. Stem Cell Research and Therapy, 15, Artikel 150. https://doi.org/10.1186/s13287-024-03757-6
Cui, Y., Labidi, A., Liang, X., Huang, X., Wang, J., Li, X., Dong, Q., Zhang, X., Othman, S. I., Allam, A. A., Bahnemann, D. W., & Wang, C. (2024). Pivotal Impact Factors in Photocatalytic Reduction of CO2 to Value-Added C1 and C2 Products. CHEMSUSCHEM, 17(18), Artikel e202400551. https://doi.org/10.1002/cssc.202400551
Dehne, M., Neidinger, S. V., Stark, M., Adamo, A. C., Kraus, X., Färber, N., Westerhausen, C., & Bahnemann, J. (2024). Microfluidic Transfection System and Temperature Strongly Influence the Efficiency of Transient Transfection. ACS Omega, 9(19), 21637-21646. https://doi.org/10.1021/acsomega.4c02590
Eixenberger, D., Carballo-Arce, A. F., Vega-Baudrit, J. R., Trimino-Vazquez, H., Villegas-Peñaranda, L. R., Stöbener, A., Aguilar, F., Mora-Villalobos, J. A., Sandoval-Barrantes, M., Bubenheim, P., & Liese, A. (2024). Tropical agroindustrial biowaste revalorization through integrative biorefineries—review part II: pineapple, sugarcane and banana by-products in Costa Rica. BIOMASS CONVERSION AND BIOREFINERY, 14(4), 4391-4418. https://doi.org/10.1007/s13399-022-02721-9